\begin{align*}
p_J(\boldsymbol{\theta}, \Sigma | \boldsymbol{y}_1, \ldots, \boldsymbol{y}_n)
&\propto p_J(\boldsymbol{\theta}, \Sigma) \times p(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n | \boldsymbol{\theta}, \Sigma) \\
&\propto |\Sigma|^{-(p+2)/2} \times |\Sigma|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{\theta})^T \Sigma^{-1} (\boldsymbol{y}_i - \boldsymbol{\theta}) \right\} \\
&= |\Sigma|^{-(p+n+2)/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{\theta})^T \Sigma^{-1} (\boldsymbol{y}_i - \boldsymbol{\theta}) \right\} \\
&= |\Sigma|^{-(p+n+2)/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (\boldsymbol{y}_i - \bar{y} + \bar{y} - \boldsymbol{\theta})^T \Sigma^{-1} (\boldsymbol{y}_i - \bar{y} + \bar{y} - \boldsymbol{\theta}) \right\} \\
&= |\Sigma|^{-(p+n+2)/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n \left[ (\boldsymbol{y}_i - \bar{y})^T \Sigma^{-1} (\boldsymbol{y}_i - \bar{y}) + 2(\boldsymbol{y}_i - \bar{y})^T \Sigma^{-1} (\bar{y} - \boldsymbol{\theta}) + (\bar{y} - \boldsymbol{\theta})^T \Sigma^{-1} (\bar{y} - \boldsymbol{\theta}) \right] \right\} \\
&= |\Sigma|^{-(p+n+2)/2} \exp \left\{ -\frac{1}{2} \left[ \sum_{i=1}^n (\boldsymbol{y}_i - \bar{y})^T \Sigma^{-1} (\boldsymbol{y}_i - \bar{y}) + 2 \sum_{i=1}^n (\boldsymbol{y}_i - \bar{y})^T \Sigma^{-1} (\bar{y} - \boldsymbol{\theta}) + n(\bar{y} - \boldsymbol{\theta})^T \Sigma^{-1} (\bar{y} - \boldsymbol{\theta}) \right] \right\} \\
&= |\Sigma|^{-(p+n+2)/2} \exp \left\{ -\frac{1}{2} \left[ \sum_{i=1}^n (\boldsymbol{y}_i - \bar{y})^T \Sigma^{-1} (\boldsymbol{y}_i - \bar{y}) + n(\bar{y} - \boldsymbol{\theta})^T \Sigma^{-1} (\bar{y} - \boldsymbol{\theta}) \right] \right\} \\
&= |\Sigma|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (\boldsymbol{\theta} - \bar{y})^T \left( \frac{\Sigma}{n} \right)^{-1} (\boldsymbol{\theta} - \bar{y}) \right\} \times |\Sigma|^{-\frac{n + p + 1}{2}} \exp \left\{ -\frac{1}{2} \text{tr}(S \Sigma^{-1}) \right\} \\
&\quad \text{where} \quad S = \sum_{i=1}^n (\boldsymbol{y}_i - \bar{y})(\boldsymbol{y}_i - \bar{y})^T
\end{align*}
Thus, we have
\begin{align*}
p_J(\boldsymbol{\theta} | \Sigma, \boldsymbol{y}_1, \ldots, \boldsymbol{y}_n)
&\propto \exp \left\{ -\frac{1}{2} (\boldsymbol{\theta} - \bar{y})^T \left( \frac{\Sigma}{n} \right)^{-1} (\boldsymbol{\theta} - \bar{y}) \right\} \\
&\propto \text{dmultivariate normal}(\bar{y}, \Sigma/n), \\
\\
p_J(\Sigma | \boldsymbol{y}_1, \ldots, \boldsymbol{y}_n)
&\propto |\Sigma|^{-\frac{n + p + 1}{2}} \exp \left\{ -\frac{1}{2} \text{tr}(S \Sigma^{-1}) \right\} \\
&\propto \text{dinverse Wishart}(n, S^{-1}).
\end{align*}