Exercise 5.5 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 5.5 解答例
a)
answer
b)
answer
Therefore,
\begin{align*} \log p_U(\theta, \psi) &= \frac{l(\theta, \psi | \boldsymbol{y})}{n} + c \\ &= - \frac{1}{2} \log (2\pi) + \frac{1}{2} \log \psi - \frac{\psi}{2} \frac{n-1}{n} s^2 - \frac{\psi}{2} (\bar{y} - \theta )^2 + c \\ \end{align*}Thus,
\begin{align*} p_U(\theta, \psi) &= (2 \pi)^{- \frac{1}{2} } \psi^{ \frac{1}{2} } \exp \left( - \frac{n-1}{2n} s^2 \psi \right) \exp \left( - \frac{\psi}{2} (\bar{y} - \theta )^2 \right) \exp \left( c \right) \\ &\propto \psi^{ \frac{1}{2} } \exp \left( - \frac{\psi}{2} ( \theta - \bar{y} )^2 \right) \times \psi^{ 1 - 1} \exp \left( - \frac{n-1}{2n} s^2 \psi \right) \\ &\propto \text{dnormal}(\theta, \bar{y}, \psi^{-1}) \times \text{dgamma}(\psi, 1, \frac{n-1}{2n} s^2) \end{align*}c)
answer
From the above equation, the joint density is recognized as the product of a Normal density (conditional on \(\psi\)) and a Gamma density. Since these are standard probability distributions known to integrate to 1, their product defines a proper joint density. Thus, it constitutes a valid posterior density.